Morphological and Embedded Computation in a Self-contained Soft Robotic Hand

نویسندگان

  • Nicholas Farrow
  • Yang Li
  • Nikolaus Correll
چکیده

We present a self-contained, soft robotic hand composed of soft pneumatic actuator modules that are equipped with strain and pressure sensing. We show how this data can be used to discern whether a grasp was successful. Colocating sensing and embedded computation with the actuators greatly simplifies control and system integration. Equipped with a small pump, the hand is self-contained and needs only power and data supplied by a single USB connection to a PC. We demonstrate its function by grasping a variety of objects ranging from very small to large and heavy objects weighing more than the hand itself. The presented system nicely illustrates the advantages of soft robotics: low cost, low weight, and intrinsic compliance. We exploit morphological computation to simplify control, which allows successful grasping via underactuation. Grasping indeed relies on morphological computation at multiple levels, ranging from the geometry of the actuator which determines the actuator’s kinematics, embedded strain sensors to measure curvature, to maximizing contact area and applied force during grasping. Morphological computation reaches its limitations, however, when objects are too bulky to self-align with the gripper or when the state of grasping is of interest. We therefore argue that efficient and reliable grasping also requires not only intrinsic compliance, but also embedded sensing and computation. In particular, we show how embedded sensing can be used to detect successful grasps and vary the force exerted onto an object based on local feedback, which is not possible using morphological computation alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor Detection and Morphology Assessment in the Liver Tissue Using an Automatic Tactile Robot

In this paper an automatic examination robot was developed to improve the process of cancer detection, tumor localization and geometrical shape diagnosis. A uniformly distributed compressive load was applied to the top tissue surface and the resultant mechanical stress was measured that was employed for the tumor diagnosis task. The experimental examinations were performed on the soft tissue of...

متن کامل

Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.

In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the r...

متن کامل

On a Moving Base Robotic Manipulator Dynamics

There are many occasions where the base of a robotic manipulator is attached to a moving platform, such as on a moving ship, terrain or space shuttle. In this paper a dynamic model of a robotic manipulator mounted on a moving base is derived using both Newton-Euler and Lagrange-Euler methods. The presented models are simulated for a Mitsubishi PA10-6CE robotic manipulator characteristics mounte...

متن کامل

Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.

Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar ...

متن کامل

Slithering towards autonomy: a self-contained soft robotic snake platform with integrated curvature sensing.

Soft robotic snakes promise significant advantages in achieving traveling curvature waves with a reduced number of active segments as well as allowing for safe and adaptive interaction with the environment and human users. However, current soft robot platforms suffer from a lack of accurate theoretical dynamic models and proprioceptive measurements, which impede advancements toward full autonom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1605.00354  شماره 

صفحات  -

تاریخ انتشار 2016